• 1^{er} cas : une fonction *f* avec un *cosinus*

Soit f la fonction définie sur $\mathbb R$ par $f(x) = -8\cos{(4x)}$.

Déterminer la primitive F de f sur $\mathbb R$ telle que $F(-rac{1}{4}\pi)=3$.

$$3-2sin(4x)$$

Solution

Pour trouver une primitive de $\cos(u(x))$, on part de $\sin(u(x))$

Si
$$G(x) = \sin(4x)$$
 alors $G'(x) = 4\cos(4x)$ (on utilise la formule $(\sin(u))' = u'\cos(u)$ avec
$$\begin{cases} u(x) = 4x \\ u'(x) = 4 \end{cases}$$

On corrige le facteur 4 en multipliant par $\frac{1}{4}$

Si
$$G(x) = \frac{1}{4}\sin(4x)$$
 alors $G'(x) = \cos(4x)$

Donc si
$$G(x) = \frac{-8}{4} \sin(4x)$$
 alors $G'(x) = -8\cos(4x)$

Donc l'ensemble des primitives de f sont les fonctions H définies sur \mathbb{R} par $H(x) = -2\sin(4x) + k$, $k \in \mathbb{R}$.

La condition $F\left(-\frac{\pi}{4}\right)=3$ permet de déterminer la valeur de la constante réelle k :

$$-2\sin\left(4\times-\frac{\pi}{4}\right)+k=3$$

$$-2\sin(-\pi) + k = 3$$

$$-2 \times 0 + k = 3$$

$$k = 3$$

$$Donc F(x) = -2\sin(4x) + 3$$

• 2^e cas : une fonction f avec un sinus

Soit f la fonction définie sur \mathbb{R} par $f(x)=5\sin{(5x)}$.

Déterminer la primitive F de f sur $\mathbb R$ telle que F(0)=-1.

$$-cos(5x)$$

Solution

Pour trouver une primitive de $\sin(u(x))$, on part de $\cos(u(x))$

Si
$$G(x) = \cos(5x)$$
 alors $G'(x) = -5\sin(5x)$ (on utilise la formule $(\cos(u))' = -u'\sin(u)$ avec
$$\begin{cases} u(x) = 5x \\ u'(x) = 5 \end{cases}$$
)

On corrige le facteur -5 en multipliant par $-\frac{1}{5}$

Si
$$G(x) = -\frac{1}{5}\cos(5x)$$
 alors $G'(x) = \sin(5x)$

Donc si
$$G(x) = \frac{-5}{5}\cos(5x)$$
 alors $G'(x) = 5\sin(5x)$

Donc l'ensemble des primitives de f sont les fonctions H définies sur \mathbb{R} par $H(x) = -\cos(5x) + k$, $k \in \mathbb{R}$.

La condition F(0) = -1 permet de déterminer la valeur de la constante réelle k:

$$-\cos(5\times0) + k = -1$$

$$-\cos(0) + k = -1$$

$$-1 + k = -1$$

$$k = 0$$

$$Donc F(x) = -\cos(5x)$$